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INFLUENCE OF THE NON-LINEAR BEHAVIOUR OF A RECORDING
INSTRUMENT ON THE PROPERTIES OF·A CONTROL SYSTEM

by C. H. L~OS *). 621-53.001 :621.317.7.087.6

Pursuant to the articles on the application of control theory to linear systems published in the
two preceding numbers of this journal, the article below deals with an element which behaves
non-linearly when the input signal undergoes very rapid variations. In. qualitatively analysing
the stability characteristics of a control loop containing this element, use is made of a rule of
thumb formulated in the second of the articles mentioned. The surprising conclusion is that
the stability of the controlloop in question is not a monotonicfunction. ofthe speed ofvariation,
but ifholVsa minimum.

Introduction

For measuring and recording important variables
in industrial plants, increasing use is being made
of recording instruments (recording millivoltmeters)
whose operation is based on automatic compensa-
tion of the measured quantity (voltage) by means
of a servomechanism. Fundamentally, the circuit
of these instruments stems from Poggendorf's well-
known compensation method (fig. la), except that
the null instrument here is replaced by an amplifier
which drives the motor that moves the sliding
contact of the potentiometer (see fig. lb). Attached
to the sliding contact is a stylus or pen. Non-electric
quantities to be measured are first converted into
an electrical signal.

R

Fig. 1: a) Poggendorf compensation method of measuring an
e.m.f. The voltage is applied to the terminals 1 and 2. The
eontaet 3 is then shifted until the highly sensitive meter G
no longer shows a deflection. The potential differencebetween
points 3 and 4 is then equal to the e.m.f. to he measured and
can be calculated from the current flowing through R and the
resistance between 3 and 4.
b) In a recording instrument, R is a potentiometer whose
sliding contact is moved by a motor M. The latter is fed by
the potential difference between 2 and 3, highly amplified by
A. Assoonas the potential differenceis zero, the sliding contact
remains stationary.

*) Research Laboratories, Eindhoven.

Frequently the recorded quantrtres also nave to
be automatically controlled, in which case the re-
cording instrument itself can sometimes be used as
part of the controller, i.e. as an amplifier. For this
purpose a second potentiometer is employed, which
is fed with a constant voltage much higher than the
voltage across the measuring potentiometer, and
whose sliding contact moves synchronously with
that of the other. In this way a gain of e.g. 5000X
can readily be achieved, offering a particularly:
simple method of effecting the control action.
A recording instrument thus modified behaves as

a linear element only when the changes in the input.
signal are slow enough for the sliding contact (the
pen) to follow. In this article we shall examine
what happens when this condition is not fulfilled.
It will be shown that instability effects may arise
in a controlloop which contains, in addition to the
recording instrument, two elements having the
transfer function (1 + jWl')-l. If the recorder were
an ideal amplifier, a control system of this kind
ought to be stable for every value of the loop gain 1).
Remarkably enough, the extent to which the sta-
bility is endangered-we shall express this presently
in a more rigorous form - does not increase monot-
onically with the discrepancy between the desired
speed of the pen and the maximum possible speed.
In fact, where this discrepancy is very large, the
danger of instability decreases!
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The sliding contact will no longer follow a varying signal
when the amplifier A (fig. lb) is overdriven. Irrespective of
the magnitude of the potential between 2 and 3, the amplifier

1) Examples of control loops with linear elements will be
found in the article by M. van Tol, Philips 'tech. Rev. 23,
109, 1961/62 (No. 4), where the transfer function is also
discussed. The relation between loop gain and stability
is dealt with by M. van Tol in Philips tech. Rev. 23, 151, .
1961/62 (No. 5).
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then delivers its maximum output signal and the pen conse-
quently moves at a constant speed. Even when the amplifier
is not overdriven, the pen does not of course follow a varying
signal exactly: the motor can only turn when the potential
between 2 and 3 differs from zero. The deviation is smaller
the higher the gain factor of A; theoretically it approaches zero
for an infinitely high gain factor. If a constant signal is applied
between 1 and 2, and the motor behaves like an ideal integra-
tor, the deviation will of course be zero in the long run.

With the aid of two figures we shall now try to
show qualitatively the way in which the output
voltage of the instrument varies when the variations
in the input voltage are too fast. We at once intro-
duce the approximations necessary to simplify the
theoretical treatment ofthe instrument's behaviour.
The most general case is represented in fig. 2. The
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Fig. 2. Output voltage of a recording instrument adapted as a
controller, when the maximum speed at which the input signal
varies is too fast for the pen to follow. The pen follows the
input signal only between Band C (and D and A', etc.).
Outside these regions the pen moves uniformly at its maxi-
mum speed.

broken curve represents the input signal and the
solid line the output signal. For convenience the
gain is assumed to be unity. When the input-signal
variations are too fast for the pen to follow, the
pen moves at a constant speed (portion AB). This
continues until the speed of variation has dropped
sufficiently to allow the pen to catch up again
(point B). The pen now follows the variation of the
input voltage until (at point C) the signal again
changes too rapidly. Thereupon the output signal
again varies linearly with time (portion CD) and
so on.
Ifwe now increase the frequency or the amplitude

of the output signal, points Band C etc. come
closer together, until finally the signal acquires a
triangular waveform (fig. 3).

Summarizing, then, we note that with rising fre-
quency and/or amplitude the gain is initially linear.
When a certain limit is exceeded, we obtain the
case represented in fig. 2, and finally, after passing
a second limit, the case in fig. 3. We shall now put

this into mathematical form, after which we shall
examine the behaviour of the instrument as an
element in a control loop, with the aid of describing
functions. In this method the problem is treated as
if the element were a linear one, the output signal
following from a sinusoidal input signal being ap-
proximated by its fundamental Fourier component.
For these sinusoidal signals we can then establish a
transfer function - the describing function - in
the same way as for linear elements. Unlike the
transfer function of a loop consisting solely of
linear elements, however, this describing function
may contain the amplitude' as well as the frequency
of the input signal.
The describing function is especially useful

for analysing the stability of a control loop con-
taining a non-linear element. Since the higher
Foürier components of an output signal whose fre-
quency is near the cut-off frequency are usually
strongly attenuated in the other elements of the
loop, the signal when it appears again at the input
of the non-linear element, having passed once
around the loop, has in fact become virtually sinu-
soidal, and may to a very good approximation be
regarded as solely due to the fundamental Fourier
component.

6041 Calculation of the transfer function

To calculate the transfer fuuction of the recorder
we start from a sinusoidal input signalof amplitude
U. Disregarding the limited speed of the recorder,
we consider the instrument to he an ideal amplifier
having a gain factor A. Since the magnitude of A
has no effect on the behaviour of the instrument -
although of course it does affect the control loop
to which it belongs - we shall henceforth assume
A to be equal to unity.

The rate of change of the input signal U sin wt
is wU coswt. As long as wU is smaller than' the
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Fig. 3. When the maximum speed at which the input signal
changes substantiälly exceeds the maximum writing speed,
the output signal has a triangular waveform.
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value corresponding to the maximum speed B of
the pen, the behaviour of the instrument is linear.
We shall first consider the case represented in

fig. 3, where the pen is no longer able to follow the
input signal at all, and the output signal has a
triangular waveform. The slope of the straight lines
is +B and -B respectively, and the amplitude zl
of the signal (half the peak-to-peak value) is
nBj2w. The first Fourier component (first harmonic)
of a triangular signalof amplitude Ll (see appendix)
is:

8Ll
- sin (wt + q;) .
n2

The amplitude ratio of the first harmonics of output
and input signals is thus:

4 B-x-.
n wU

The phase angle q; is quickly found when it is
remembered that the peak value of the output
signal, and hence of its first harmonic, occurs at the
moment at which the input signal (in the second
quadrant) also has the value nBj2w, and that the
peak value of the input signal occurs when cot =
nj2. It follows from this that:

n ( d) n nBq; = '2 - n - are sin
2wU

= -'2 + are sin
2wU

·

. (3)

Before considering the case of fig. 2, we shall
consider what are the "limits" mentioned above.
We have seen that the behaviour of the instrument
is linear if wU < B, i.e. if BjwU > l.

The case of fig. 3 - triangular output voltage -
occurs where - ioU cos wtl > B, that is where

nB
wU cos are sin -- > B, i.e. where

2wU

1/ (nB)2 BV 1- 2w U > w U .

This is the case when

B 1
-<-:t====
wU VI + n2j4 '

i.e. when

B- < 0.538.
wU

The case of fig. 2 thus occurs in the region

B
0.538<- < l.

wU

If we now calculate the first Fourier component of
the output signal when the latter is partly sinusoidal
and partly linear with respect to time (seeappendix),
we find for the amplitude of the first sine term:

U
bI = - {n - are cosp - k(p) - sin k(p) cos k(p) +

n
+ p VI p2 + 2p sink(p)}, (5)

and for that of the first cosine term:

U
al = - {cos k(p) - pp,

n
(6)

(1) where p = BjwU and k = wtB (cf. fig. 2). From
this we can directly ,derive the amplitude ratio
(va;+ bl2jU) and the phase shift (arc tan aljbl)
for the relevant range of p values. Combining
the result with those for the regions p > 1 and
p < 0.538, and plotting a Bode diagram - with the
quantity wUjB or ljp as the abscissa - we arrive
at jig. 4. As can he seen, the characteristics closely
resemble those of a linear element having one time
constant LR of magnitude nUj4B. This time con-
stant is thus proportional to the amplitude of the
input signal and inversely proportional to the
maximum writing speed.
A characteristic difference is that for p values

greater than unity the gain is exactly constant and
the phase shift exactly zero. In this region the

(2)

rp

1

(4)

Fig. 4. Bode diagram representing the frequency-response
characteristics of a recording instrument. The quantity l/p
(= coUIB) is plotted as the abscissa. The curves may be
approximated by those of an element having a single time
constant TR of the value nU/4B (broken lines).
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Fig. 5. Nyquist diagram appertaining to fig. 4. The quantity
lip is again chosen as the variable in order to draw one curve
instead of a set of curves. The crossesmark the points p = 1
and p = 0.538. As in fig. 4, the broken curve relates to an
element having the transfer function (1 + jwnUI4,B)-1. The
figures given beside this curve relate, of course, to t».

instrument does not behave like an element with a
single time constant but in fact like an ideal am-
plifier. The relevant Nyquist diagram is shown in
fig. 5. This too is represented in such a way that a
point on the curve is not applicable to a certain
value of w but to IIp. It should be noted that all
points for which 0 < IIp < 1 coincide on the real
axis.

A recording instrument in a control loop with two
time constants

We shall now examine the characteristics of a
controlloop as shown in fig. 6. Here R and A to-
gether constitute the recorder; R represents the
behaviour of the instrument as such and A the
gain independent of R, which is solely determined
by the voltage applied to the second potentiometer.

Fig. 6. Block diagram of a control loop consisting of a recorder
R, an ideal amplifier with gain factor A, and two elements
whose transfer function is G(jw) = (1 + jW't")-l.

Blocks I and II both have a transfer' function of
the form (1 + jW'i)-l, but markedly different values
of 'i. Where p > 1, the recorder behaves like an
ideal amplifier and the control loop is stable. Where
p < 1, however, R also contributes to the phase
shift, which may therefore in principle be greater
than 180°, so that instability may occur. We shall
examine this point presently.

First, however, we shall emphasize that, for the
purposes of stability considerations, the situation
in a loop containing a nonlinear element differs
somewhat from that of a loop containing nothing
but linear elements. For in this case the Nyquist
diagram does not contain simply one curve, which

6044

mayor may not enclose the point (-1,0), but a set
of curves whose parameter is an amplitude - in our
case the amplitude of the signal (which may consist
only ofnoise) appearing at the input of the recorder.
To be sure of stability, the loop gain should be
chosen such that that curve in the complete set of
curves which cuts off the largest section of the
negative real axis does not enclose the point (-1,0).
If that section has no finite value, then stability is
out of the question.
A good qualitative insight into the behaviour of

the control loop in fig. 6 can be obtained by using
the rule of thumb arrived at in the above-mentioned
article 2). This stated that in a controlloop which,
besides an ideal amplifier, contained solely elements
having the transfer function G(jw) = (1 + jW'i)-l,
the maximum permissible loop gain Amax is equal
to 'i11'i2• Here 'i1 is the longest and 'i2 the next long-
est time constant. If A = 'i11'i2, then the gain
drops to unity at the second break in the double-
logarithmic amplitude characteristic, i.e. at a
phase shift of 135° (90° due to the block with 'i1 and
4,5°dueto thatwith 'i2).Although thebreakin the case
of the recorder corresponds to a phase shift somewhat
smaller than 45°, that does not affect the validity
of the argument.
If 'iR is initially the longest of the time constants

('i1= 'iR)' then 'iR determines the position of the
first break (fig. 7a) and an increase in U - we call
the initial value UI - leads to greater stability,
and a decrease to reduced stability. If 'iR is the next
largest time constant (fig. 7b), then 'iR determines
the position of the second break in the curve, and
the stability reacts in precisely the opposite way
to variations in U.
If we now let the amplitude U pass through a

range of values such that 'iR begins with the next
largest time constant and ends with the largest,
and if we start from a stable state (A = 'i11'iR)'we
then see that as U increases the stability decreases
- and may finally result in instability - but that
the stability of the system increases again as soon
as 'iR has become the largest time constant. The
stability is therefore .not a monotonic function of U,
but shows a minimum when 'iR is roughly equal to
the longer of the' two fixed time constants.
An important consequence of this effect is that

when a control loop of the type in fig. 6 becomes
unstable it does not start to oscillate with ever-
increasing amplitude, but enters into a stationary
state (see below). By measuring the amplitude and
frequency occurring in this state for various values
of the two fixed time constants we have been able
to verify experimentally the theory described above.
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We shall work this out quantitatively for the case
where the two :fixed time constants are identical.
Let the transfer function of the recording instru-
ment be approximately (1 + jW-rR)-l where -rR=
nUI4B (see above), then the transfer function KG
of the entire (open) control loop is given by:

, A
KG = -::-----:---::-:--:-::------:-

(1 + jW-r)2(1 + jW-rR)
A

The Nyquist diagram for this function, for the case
where A = 10 and both :fixed time constants are
equal to one second, is shown in fig. 8. Here again,
there is not just one curve but a set of curves with
-rRas parameter. The three curves shown relate to
cases where -rRis equal to 0.1, 1.0 and 10 seconds,

IKG!= 1

loglKGI

1
-logw

IKG!=A 1------,..

!KGI=1

loglKGI

1

-Iogw

Fig. 7. Bode diagram of the controlloop in fig. 6, approximated
by straight lines. a) The time constant .R of R is the longest
of the three time constants. When the amplitude U increases
(the other parameters remaining constant) the first break
shifts to the left and the gain at w = 1/.2 decreases, as a,result
of which the stability increases. b) .R is the next largest time
constant and determines the position of the second break in
the curve. With increasing amplitude the stability decreases.

Fig. 8. Nyquist diagram of the controlloop in fig. 6, for the
case where the two fixed time constants are both 1second and
A is 10. A set of curves is found whose parameter is the time
constant .R of the recorder. For .R = 0.1 sec and 10 sec the
closed loop is stable; for .R = 1.0 sec it is unstable. The
figures beside the curves again give the relevant values of w.

respectively. As can be seen, the closed loop is
stable in the two extreme cases, but not when -rR
is 1second.

The behaviour of the stability as a function of -rR
- i.e, as a function of UIB - can be derived from
the displacement of the point where the KG curve
intersects the negative real axis. For this purpose
we equate the imaginary part with zero:

The curve therefore intersects the negative real
axis (w =1= 0) when:

2 2-r + -rR
w = .

-r2-rR
(8)

The coordinate of the point of intersection is:

A A-r-rR
-2(-r+-rR)2

(9)

It follows directly from eq. (9) that the point of
intersection tends to the origin when -rR is very
small or very large. The absolute value of the real
coordinate is maximum when -rR= -r. Substituting
this in eq. (9) we find that this maximum value is
equal to A18. Where A > 8, as in the example of
fig.: 8, there is therefore a region of -rR values at
which the system is unstable. The limits -rR'
and -rR" of that region can be calculated with the
aid of eq. (9). We find

604b

and
-rR"= 1-r{(A - 4) + VA(A- 8)}. (lOb)

If we let -rR- or the amplitude U, where B is
:fixed - increase from a low value, the system begins
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to oscillate as soon as 7:R exceeds the value 7:R/•

As a result, the amplitude goes on increasing of its
own accord to a value corresponding to 7:R'" The
system then remains oscillating at this amplitude
with a frequency given by:

2 _ 27: + 7:R"
W - 2 "

1:' 7:R
(ll)

Experiments have shown the measured oscillation
frequencies and amplitudes to be in good agree-
ment with the relations derived theoretically.

Appendix: Calculation of the first Fourier components of the
output signal '

The amplitudes bn and an of the nth sine and cosine terms in
the Fourier expansion of the periodic function f(x) are given
by the equations:

+'"

bn = ~ffW sinn;d~,

-'"
(12a)

and
+'"Ij'an = n fW cosn~d~. . . . . . (12b)

-'"
Writing the nth harmonic in the form

Van2 + bn2 sin (oot + f{Jn),

we find that the phase angle f{Jn is equal to are tan an/bn•
If f(x) cannot be described by one analytical function in the
whole region from -n to +n, the integrals in (12) must be
split into separate integrals whose limits are those within'
which the relevant expression for f(x) is applicable. In calcu-
lating the first Fourier component of the triangular output
voltage (fig. 3) we shall disregard the phase - which has
already been found by other means - and choose the zero
.point of the time axis so as to enable us to use a sine series.
We then find

",/2 '"

bI =! ('2Llxsinxdx +! ('2L!(n-x)sinxdx = 8Ll/n2• (13)
n.. n n~ n:

o ",/2

In order to calculatethe first Fourier component of the partly
sinusoidal and partly linear output signal (the case of fig. 2)
we have to ascertain the moments at which a particular part
changes to the next. We shall first consider the transition from
a sinusoidal to a linear part (fig. 2, point A). For the relevant
moment of time tAwe can write:

wU cos wtA = B,
or

wtA = - arc cosBfwU. (14)

Putting BJwU = p, the value VA of the output voltage Vo
that occurs at t = tA, and which is equal to U sin wtA, can be
reduced using eq. (14) to:

VA = -UVl-p2.
The equation of the line section AB is then:

-- 1Vo=-UVl-p2 + B(t + - arccosp). . ... (16)
00

The point B where the output voltage again becomes sinu-

soidal is found by ascertaining the value of t at which the line
defined by (16) intersects the sinusoidal line:

-- 1U sin wtn = -U 1'1 - p2 + B(tn +-arccosp). (17)
00

Putting wtn = k, equation (17) transposes to:

sin k + 1'1_p2 = +kp +p are cos p. (18)
This equation cannot be solved analytically, and therefore no
formula canbe derived from it for tn.We have therefore adopted
a graphic solution. In fig. 9 can be seen how le (=wtn)
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Fig. 9. Variation of the quantity k (= wtn) as a function of
p (=BJwU).

varies with p (=BJw U) in the region 0.538 < p < 1. The four
expressions for feg) to be used here, and the limits between
which these expressions are valid, are given in the following
table.

function lower limit
oot =

upper limit
wt=

Bt+ Upare cosp-UVl- p2

U sin oot

2n - arc cosp

-arc cosp le

k n - arc cosp

-Bt + Upn- Uparccosp
. + un-pil

U sin oot

n - arc cosp

The fact that k can only be calculated numerically does not
make it impossible to carry out the integrations analytically
(see (5) and (6)). Numerical calculation is required only when
it is necessary to determine the variation of the coefficients
al and bI with p.

(15)

Summary. When the speed at which the input signal varies
exceeds a certain value, the pen of a recorder is no longer able
to followthe signal, but movesuniformly at its maximum speed
B. In such a case the recording instrument may no longer be
regarded as a linear and lag-free element. The frequency-
response characteristics found when the output signal is
approximated by its first Fourier component are found to
resemble closely those of an element having a single time
constant. The value of this time constant, however, is here
proportional to the amplitude U of the input signal and in-
versely proportional to B. When this element is included in a
control loop having a further two time constants, the stability
of the loop is a function of U. The maximum stability is found
at very small and at very large values of U.


