
PH I LI PS TEC'H N'ICAL REVIEW
VOLUME 35, 1975, No. 10

Structural testing of digital circuits

w. G. J. Kreuwels

Without the aid of a computer it would be almost impossible to develop large logic net-
works like LSI circuits. Designing the circuit, testing the design, designing and manu-
facturing the masks, testing during manufacture, all these stages require so much com-
puting work that only computer-aided design can provide the answer. At the same time
it is necessary to have good software, otherwise the computing time may become im-
practically long, even for a fast computer. This article deals with the functional test,
whosepurpose is to check whethera new designof circuit does infact perform the required
logic function. If the test were to be carried out in full on a network with 64 inputs -
not an unusual number for anLSI circuit - it would require264 experiments. Even with
test equipment specially built for the purpose and checking at a rate of onceper nano-
second, the test would take more than 300 years. Such a complete test, however, would
cover very many more possibilities than those of any practical interest. The programs
dealt with in this article, whichare based on the structure of a network to be tested, can
be used in setting up a much shorter test for checking the functional specifications.
Depending on the type of network, this procedure requires only a few minutes to a few
hours of computer time, while the actual test takes only a few seconds during manu-
facture.

Introduetion

In the manufacture of logic circuits test procedures
have to be carried out during both the design phase and
manufacture. The most extensive of these is the 'func-
tional' test, which determines whether a circuit meets
the functional specifications, in other words whether
the circuit performs the desired logic function cor-
rectly.
The functional test for small circuits with few gates

(AND, OR, NAND and NOR elements) can be car-
ried out quite simply by successively applying all pos-
sible combinations of the logic values' l' and '0' to the
inputs. The logic values at the outputs must then corre-
spond to the response of a fault-free circuit. In the
design phase this procedure can be simulated on a com-
puter. In a production test the various test patterns can
be generated by a counter circuit and fed to the net-
work under test and to a calibration circuit: the two
responses are then compared (fig. 1).

lr W. G. J. Kreuwels is with Philips Research Laboratories, Eind-
hoven.

Such a procedure, even using a very fast computer
for generating the test patterns, is not feasible for large
circuits that have several hundred gates and scores of
inputs and outputs. In a network with n inputs the
number of different combinations of input signals is

Fig. 1. Testing a simple logic circuit with n inputs and In.outputs.
A counter C generates the test patterns and simultaneously feeds
them to the inputs of the circuit under test L and to a calibration
circuit R. The output signals are fed to a comparator circuit D,
which delivers a signal when the two responses are not identical.

262 W. G. J. KREUWELS Philips tech. Rev. 35, No. 10

2n, and 2n test patterns therefore have to be applied.
Even if such patterns are generated at a rate of one per
nanosecond, such a test takes far too long. For a net-
work with 64 inputs it would take no less than 300
years. A further complication is that the response is not
entirely determined in all the circuits by the instanta-
neous combination of input signals. This is only the
case in combinational networks. Usually, however,
large networks are sequential, and in such circuits the
response is dependent not only on the instantaneous
inputs but also on a number of input patterns preceding
them and on the order in which they are presented. For
circuits of this type the computer would have to gen-
erate different series of test patterns, which would make
the test last even longer. For large networks, therefore,
a very much shorter functional-test procedure is needed.

Even with a shorter test procedure it is only the
input and output signals that are examined. Indeed,
this is the only way of testing large-scale integrated
(LSI) circuits, since the separate components are so
small as to be inaccessible: but even with networks on
printed-wiring panels it is much simpler to make the
measurements only at the input and output connectors.
We have therefore tried to find ways of arriving at a
group of test patterns that is smaller, yet still sufficient
for the functional testing of digital networks.

The existence of such a small group of test patterns
may be demonstrated as follows. The starting point of
the complete functional test is the truth table; this
gives the functional specification of a combinational
network, this is to say the relation between all the
combinations of input and output signals (a sequential
network is described by a series of these truth tables).
A large truth table may not only correspond to a single
network, it mayalso correspond to many other kinds
of network of widely different structure. Since all these
networks have their own characteristic types of fault
the complete functional-test procedure is capable of
detecting all possible faults in all these various net-
works. This is much more than is required: all we want
to know is whether the particular design or network
being tested meets the specifications. It is obvious that
a much smaller group of test patterns will suffice for
this. These patterns should not be derived from the
truth table but from the structural design data. To
describe the abbreviated functional test, which only
uses this small group of test patterns, we have therefore
intruduced the term structural test.

Thfs àrticle will give an account of the computer
programs that generate the patterns for the structural
test. .The programs are meant to be used in the design
phase of a: network, and we shall see that certain design
faults can be directly brought to light by such a pro-
gram even at the stage when the test patterns are being

designed. The principle we use for deriving the test
patterns was introduced many years ago [11, but has
not yet been used in practical programs.

Once the test patterns have been derived, the actual
structural test during manufacture takes very little
time. Of course the number of test patterns required
will depend to a great extent on the type of network,
but a circuit with a thousand gates will require a few
hundred to a few thousand patterns. If these patterns
are generated during the manufacturing test at a speed
of one per microsecond, the test will take no more than
a few milliseconds. It should be realized when applying
the test patterns that the method aims simply at an-
swering the question of whether the network functions
correctly or not: the test patterns are therefore pri-
marily meant for fault detection and not for fault loca-
tion [21.

Before dealing with the procedure for deriving the
test patterns, the scope of the structural test will be
indicated by describing the faults that can occur in the
various stages of designing and manufacturing a net-
work.

The faults in a digital circuit

The design of a digital network can be subdivided
into three phases, each with its own distinct types of
fault.
1) In the first phase the time variation of signals in small
circuits consisting of a few dozen transistors at most is
calculated for various values of the physical param-
eters that determine the characteristics of the circuit.
This circuit analysis gives a general circuit description
from which the digital behaviour can be deduced by the
introduetion ofthe logic levels and time sampling. This
yields descriptions of gate circuits with various speci-
fications for the transistor parameters and for the
tolerances ('margins') within which other parameters
such as supply voltages, load, temperature, etc. must
remain. If one or more of these specifications is not
met, the result may be that a signal does not reach the
required logic value but a value somewhere in between
the two. Such an out-of-tolerance value is referred
to as a 't' value (figs. 2a and b).

Faults of this type are detected during the manu-
facture of an integrated circuit by measuring the
parameters of a special test transistor, which is formed
on the same chip as the circuit and is regarded as being
representative ofthe transistors in the circuit. 'Marginal
tests' are also carried out to verify whether the circuit is
unaffected by variations of the other parameters within
the specified limits.
2) In the second phase the gate circuits are combined to
form a network. If all the specifications mentioned

Philips tech. Rev; 35, No. 10 TESTING DIGlTAL ICs 263

under (1) are now taken into account, only the time
factor need be investigated. In a large network the
delay times ofthe gate circuits are additive over various
paths, and as a result the signals at various places in
the circuit can get out of step. A signal may then reach
the required level too late and thus be unknown at the
sampling time: this case is also referred to as a 't'
value (fig. 2c).
These dynamic errors in a design are found by

simulating the dynamic behaviour of the network on a
computer. The programs required for this are very
much simpler than those for circuit analysis but they
have to be applied to a much larger network. The
amount of computation can be substantially reduced,
however, if the designer indicates where difficulties in
the design are likely to occur. The dynamic investiga-
tion of a design produces a number of test patterns,
which can also be used for testing the dynamic behav-
iour of the circuits during production.
3) Even if all faults of the first type are eliminated, so
that all signals reach a logic level at the instants of
sampling, design or production faults can still cause a
wrong response in the network. These faults are
detected by the functional test or by its abbreviated
form, the structural test. A fault analysis shows that at
this stage we need only consider situations in which the
signal has a fixed value ('0' or '1') at one particular
point in the circuit and does not respond to the other
signals in the desired manner. These are referred to as

Fig. 2. lllustrating the signal faults in a digital circuit. a) Behav-
iour of two signals VI and V2. Two regions are defined in which
the logic values '0' and 'I' are assigned to the signals. Only the
values at the times t »; tl.:+l, etc. are important; in a synchronous
circuit these times are determined by an external clock signal, in
an asynchronous circuit by a signal from the circuit itself. b) Signal
V2 does not reach level '1', so that at the time tHI the value of V2
is indeterminate. It is then said to have a value 't'. c) The signal
V2 reaches level '1' but it does so too late. Wherr this dynamic
fault occurs, the signal is also said to have a 't' value.

'stuck at' faults: either 'stuck at zero', abbreviated to
s-a-O,or 'stuck at one', abbreviated to s-a-l. Production
faults that can cause s.a. faults are broken connections
and short circuits. Possible design faults are of course
difficult to indicate, but by analogy with open- and
short-circuits it is possible to think of a necessary con-
nection that might be missing or an unnecessary one
whose inclusion could introduce a fault.

The fault analysis is performed in two phases. First the pos-
sible physical faults in the circuit are converted into s.a, faults
(other types offault have already been detected in the other tests).
Some physical faults correspond to one s.a. fault, others such as
short-circuits may result in a group ofs.a. faults at various points
in the circuit. In the second part ofthe analysis it is found that all
these physical faults can be detected by a test program for single
s.a. faults. It has been found that this program can also detect all
groups of s.a. faults.

It will be clear from what has been said above that
the design of a large digital network is only possible
with the aid of a computer: it is an example of com-
puter-aided design. The designer generally has a large
number of existing programs available (sometimes
called 'tools') for the computing work. Examples at
Philips are the PHILPAC programs for circuit anal-
ysis, PHILSIM for simulating the dynamic behaviour
of networks, and the TESTCC and TESTSC pro-
grams, described in this article, for deriving the test
patterns for the structural test.

Test patterns for a combinational network

The procedure used in deriving the test patterns for
the simple case of a combinational network will first
be described. The computer program developed for
this has been given the name TESTCC.

Structure input
The computer that works out the test patterns is

supplied with the structural data for the network in the
form of a table;fig. 3 shows how this is arrived at for a
combinational network. The network (a) is presented
in the form of a 'directed graph' (b), in which all the
connections are shown but the components are reduced
to nodal points. Inputs and nodes are numbered in
such a way that the information in the circuit is always
[1) R. D. Eldred, Test routines based on symbolic logical state-

ments, J. Ass. Computing Mach. 6, 33-36, 1959.
D. B. Armstrong, On finding a nearly minimal set of fault
detection tests for combinational logic 'nets, IEEE Trans.
EC-15, 66-73, 1966. I·

[2) A preliminary investigation with a. simple' network has
revealed that the structural-test program gave almost the same
amount of information about the location of the faults in this
network as the complete functional test. We therefore intend
to design fault-location programs on the basis of the structural
,test.

264 W. G. J. KREUWELS Philips tech. Rev. 35, No. 10

passed on from a lower to a higher number. Each line
in the table (c) corresponds to an input or a node point:
the first column gives the number of this point, the
second column gives a code for the type of component
represented by the node (1, 2, 3, 4 for OR, AND, NOR
and NAND gates). The third column contains a '1' if
the node is 'observable' in other words if it represents
an output gate of the network (in fig. 3 only the last
NOR gate), otherwise the column contains a '0'. The
other columns give the numbers of the other nodes that
are connected with the inputs ofthe component. In this
way the whole network is described in a form that can
easily be fed to the computer, e.g. on punched cards.
The truth tables for the various types of component
still have to be added to this table, of course.
In addition to the structural data for the network,

the computer also receives information about the faults
to be detected by the test patterns. For the structural
test these are only the 'stuck at' faults, which can occur
on any line connecting two nodes. If the network bran-
ches at a particular node, the fault need not always
affect all the lines branching out from that point; it is
possible that the fault will only appear on one of the
lines beyond the node, and hence only at the input of
one of the next nodal points. It is then called a 'gate-
input fault'.

The criti~al path

The procedure for deriving the test patterns is based
on finding critical paths. A critical path is a path through
the network that makes the effect of an s.a. fault on a
particular line in the network visible at an output. To
each critical path there corresponds a pattern of input
signals, which is therefore the test pattern for the partic-
ular fault. The term 'critical path' is used to indicate
that all the signals on that path are 'critical': any
change in the value of one of the signals propagates to
the output. It therefore follows that the corresponding
test pattern shows up not only the original s.a. fault but
also all the other faults that can occur along that path
and hence bring out the same change of value at the
output. It does not matter which output gives the error
signal because the test checks the total response of the
network. .
, For some faults several critical paths will be pos-

sible, and therefore several test patterns. However,
since we wish to derive the smallest possible group of
test patterns, the search process is stopped as soon as
a critical path is found. Of course, a check is made for
each test pattern discovered, to see if any other faults
can be detected with it at the same time. These need
not necessarily. be faults occurring along the critical
path: in networks with more than one output faults
can appear at the same time at other outputs.

z etibct: + äEëiI

z

Q

2
72

3

Q ·4
7 77

7 0
2 0
3 0
4- 0
5 3 0 7 3
6 3 0 2 3
7 3 0 2 4-
8 3 0 2 5
9 3 0 7 6
70 3 0 4- 6\
77 3 0 3 7
72 3 7 8 9 70 77

f
Fig. 3. Coding of the structure of the network for feeding the
structural information to a computer. a) Example of a combina-
tional network. b) Simplified diagram of the network (directed
graph) in which the inputs and components are represented as
nodes. c) Table containing all the data relating to the structure of
the network. The first column contains the numbers assigned to
the nodes, the second column gives a code number for the com-
ponent represented by the node (a NOR gate in all cases here),
the third column contains a 1 where an output gate is referred to,
otherwise a 0, and the other columns give the numbers of the
other nodes that are connected to the inputs ofthe component.

The signal under test will be indicated by the symbol
k or k so that we can follow it through the circuit. Ifwe
are looking for a test pattern that detects an s-a-O fault
we call the signal k, if we want to detect an s-a-l fault
we call the signal k. We can now use the rule that the
fault is not present if k is 1 but is present if k is '0'.
Fig. 4 shows part of a critical path in a network. It can
be seen from this figure that the other input signals of
the components forming the critical path have to meet
a number of conditions, referred to as 'imperative im-
plications'. Of course, these conditions may lead to
contradictions in other parts of the network, in which
case the path cannot be used and another must be
looked for. It will be evident that isolating a path in
which no contradictions occur, and doing this for all

Philips tech. Rev. 35, No. 10 TESTING DIGnAL les 265

s.a. faults that can occur in a network, is a very consid-
erable task. We cannot therefore discuss the complete
TESTCC program here but will have to confine our-
selves to the algorithm used by the computer.

Non-testable faults

When a critical path for a particular fault has been
found, this shows in itself that the fault is capable of
being tested, and at the same time the test pattern to be
used has been found. The question that now arises, of
course, is whether a critical path can in fact be found
for every s.a. fault. We know that a critical path exists
for all faults that are detected by the complete func-
tional test, since this test also makes the faults observ-
able at an output. Thus when all the possible critical
paths have been explored systematically in the deriva-
tion of test patterns for the structural test, test patterns
have to be found for all these faults. There are also
faults, however, that are not discovered by the com-
plete test. There is no critical path for a fault of this
kind and therefore no test pattern can be found for it.
This relates mainly to faults in parts of a network that
are redundant in the functional logic. In some cases
such parts ofthe circuit are added for technical reasons,
but the discovery of a non-testable fault in the design
phase of a network more usually points to a design
fault. The ability to reveal such faults at an early stage
is therefore a valuable feature of the structural proce-
dure.

Generation of test patterns

Let us suppose wewish to find a test pattern that will
show whether there is an s-a-O fault on a connection line
j in a network. The algorithm for looking for test pat-
terns consists of a number of procedures: the first one,
called FOR (for forward) is started by assigning the
value '2' to alllines in the network. Expressed in words,
this means that the values of the signals are unknown.
For the component that has the line j as an output
procedure FOR makes use of the truth tables to look
for a combination of input signals for which this line
has the value '1'. If there are various ways of doing

Fig. 4. Example of a chain of components forming part of a
critical path. At one of the inputs of the component on the far
left there is a signal k; the level '0' or '1' of k indicates whether or
not a 'stuck at' fault is present somewhere on the left of this
component in the network from which this chain has been taken.
(A 'stuck at one' or 'stuck at zero' fault means that the signal at
a particular point remains fixed at the value' l' or '0', irrespective
of the input signals applied to the network.) For the signal k to
be transferred to the right, the other inputs of the OR and the
NOR gate must all be 'O'and those ofthe AND and NAND gate
must all be '1'.

k

this, FOR remembers. them. In accordance with. the
first possibility investigated, the values '2' at the inputs
of the component are now replaced by a '0' or a '1'.
The signalon theline j acquires the value k. FOR then
starts to look for a critical path along which k appears
at the output. The various possible paths are inves-
tigated one by one, and in each case the values at the
inputs of the other components are changed from '2'
to '1' or '0', in the manner shown in fig. 4. If contradie-
tions are found, FOR tries the next possible path. If
the filling in of these 'imperative implications' leads to
contradictions in all paths, FOR carries out the same
investigation for the other combinations of input
signals of the component that has j as its output.
In the search for a critical path there are two alter-

natives: either FOR encounters contradictions in all
possible paths, or FOR finds a critical path along which
an output can acquire the value k (of course a path can
also be used if the output acquires the value k). In the
first case there is no test for the fault investigated; FOR
then receives the instruction to look for a critical path
for another fault. If FOR does find a critical path it
remains available, as there may be more possibilities
for the linej and there is not as yet any certainty about
the usefulness of the path that has been found. Contra-
dictions may yet arise during the introduetion of the
'non-imperative' implications. Before there is any
question of a test pattern it is, of course, also necessary
to substitute '0' or '1' for the value '2' on alllines in the
network that are not directly connected with the critical
path, and these values must also not be contradictory,
either with one another or with the values already
assigned. These other signals are filled in by a procedure
called BACK, which begins at the output side of the
network and works through it in the opposite direction
to FOR. In general BACK will also encounter various
possible choices, which must be dealt with in succession.
When the BACK procedure encounters no contra-

dictions, a test pattern has been found. If inputs of the
network remain with the value '2', this means that the
signals here may be chosen arbitrarily. If BACK con-
tinuously comes up against contradictions the path
found by FOR does not after all lead to a usable test.
FOR must then look for the next possibility, which in
turn is investigated by BACK. In this way the interplay
between FOR and BACK leads either to a test pattern
or to the conclusion that there is no test for this par-
ticular fault. The combination of FOR and BACK is
called LOOK.

When a test pattern has been found for an s.a. fault
on a particular line in the network, this same test pat-
tern will also reveal faults on a number of other lines,
as we saw earlier. To prevent the whole LOOK proce-
dure from being repeated for these faults as well, the

266 , W. G. J. KREUWELS Philips tech. Rev. 35, No. 10

algorithm contains a procedure MORE. This procedure
examines each test pattern to find out which other faults
it will also discover. A procedure BOOK keeps a tally of
the faults for which a test pattern has already been
found in this way, and on the basis of this information
a procedure CAND determines the next 'candidate',
in other words the particular fault for which a test
pattern must now be sought. The interplay of BOOK
and CAND in fact 'directs' the generation of the test
patterns and is therefore called DIRECT. The
DIRECT, LOOK and MORE procedures together
constitute a 'fault-detection strategy' STRAT, which
can solve the whole problem.

Fig. 5 illustrates schematically the interaction of the
various procedures that together constitute STRAT.
Of course, depending on the actual execution of the
procedures FOR, BACK, etc. there are various pos-
sible STRAT procedures. Fig.5 shows only one
example, the procedure followed by the TESTCC
program, which derives the test patterns for a com-
binational network.

Test patterns for a sequential network

As already mentioned above, the response of a
sequential network to a particular input pattern de-
pends not only on this one pattern but also on a num-
ber of preceding patterns and on the sequence in which
they are presented. This means that series of test pat-
terns are necessary for the structural testing of a se-
quential network. The next section will give an account
of the TESTSC program used for deriving these 'test
sequences'. This program is a collection of a number
of strategies that work in much the same way as

STRAT

Fig. 5. Diagram ofthe procédures that together form the strategy
STRAT for generating the test patterns for a combinational net-
work. The' procedures FOR (forward) and BACK," together
forming LOOK, generate the test patterns; MORE investigates
the total fault-detection capacity of the test patterns. found;
BOOK and CÄND, together forming DIRECT, determine which
new faults will require a search for a test pattern. '".

STRAT. First, however, we shall look at the way in
which the structure of such a circuit can be fed to the
computer.

Structure of a sequential network

The characteristic feature of the structure of a se-
quential network is the occurrence of feedback loops
in the information flow through the network. In
describing this structure by the method illustrated in
fig. 3 it is not therefore possible to number the nodal
points in the directed graph in such a way that the
information flows only from a low to a high number.
At certain places information will inevitably flow back
from a high to a low number. Since the FOR and
BACK procedures that look for a critical path are
unable to handle such feedback loops, we use a special
approach in which a sequential network is represented
as a series of combinational networks.
In a sequential network all the internal feedback

loops can be considered as being broken and taken to
the outside (seefig. 6a). This produces a number ofnew
inputs and outputs, denoted by Y, which differ from
the existing inputs and outputs, denoted respectively by
X and Z, because they are not accessible in the actual
network. The signals on these lines cannot therefore be
directly affected or measured. The feedback lines in
this model are produced by connecting the Y outputs
located outside the circuit to the corresponding Y
inputs. The resultant network - the inside block in
fig. 6a - contains no further feedback lines and is
therefore combinational. It can be described by a table
ofthe type shown in fig. 3c: it is, however, necessary to
indicate beside each input or output whether it relates
to an X, Y or Z line.
Our next step is to replace the feedback lines in the

model shown in fig. 6a by 'feed-forward' lines to copies
of the same network. This yields the model in fig. 6b,
which shows the sequential circuit as a series of identical
combinational circuits, interconnected by the Y lines.
This model gives a good picture of the actual situation
in a sequential network: at the time to to l-n. the input
patterns Xo to Xn are successively. presented to the
network, giving the responses Zo to Zn. The output
pattern Zn depends on the input signal Xn and on
the values on the Y lines at the time tw: If we indicate
this functional relation by fz, then Zn = fz(Xn,Yn).
Similarly, Yn is a function of the preceding input pat-
tern and of the Y values at that moment of time:
Yn = !y(Xn-l,Yn-l). Repeated substitution of this
expression in the expression for Zn yields the relation
illustrated in fig. 6b (the figure must then be read from
right to left). The signals Xo to Xn actually presented in
the network at the times to to l-n. are fed in this model
to the copies 0 to n at the same times.

Philips tech. Rev. 35, No: 10 TESTING DIGITAL ICs

Iy[I

--~}--- x---k---
_ -I
-_ -~

~ comb
seq

Generation of the test sequences

The principle of the derivation of a test sequence is
illustrated in fig. 6. A search is made with the LOOK
procedure for a critical path for a particular 'stuck at'
fault in the combinational network from the model in
fig. 6a. We thus look for a test pattern that makes the
fault visible at an output (we shall return below to the
initial values of Yt assigned to the Y inputs for this
purpose). If the fault signal appears via this path at a
Z output, this test pattern alone is all that is necessary
for detecting the fault. If, however, k appears at a Y

x

Q

-
Yo-

o

dashed line in fig. 6b): the test, patterns Xt to Xj cal-
culated in these copies then form a test sequence for
this particular s.a. fault.
The initial values Yt that we fed in when calculating

the path in copy i are the result of 'initialization'. This
is done by means of a series of patterns Xo to Xt-I,
which starts from an arbitrary state of the network in
which the values on the Y lines are completely un-
known, and applies a known pattern Yt to the Y lines.
All the subsequent Yand Z responses on input patterns
X can be calculated from these initial values. The

z

Fig. 6. a) Model ofa sequential network in which it is represented as a combinational network
with external feedback lines Y. The response Z in this model depends not only on the instàn-
taneous input pattern X but also on the values on the Y lines. These in their turn are deter-
mined by what has been presented earlier on the X lines. For an s.a. fault k a search for a
critical path can be made in the combinational model. If k appears at a Z output, one test
pattern is sufficient for detection; if k appears at a Youtput, a series of patterns must be
derived. b) Extension of (a) in which the feedback lines are replaced by connecting lines to
copies of the same network. (The various lines that together transport an X, Yor Z pattern are
all represented here as a single line.) A critical path in copy i that ends at a Y output is con-
tinued in copy i + 1, starting from the calculated values Yi+l. By continuing until the fault
appears at a Z output we find a test sequence Xi to Xi' The critical path is schematically
represented as a dashed line.

output, the fault can then no longer be observed, since
the Y lines are not observable. We again look for a
critical path in the model given in fig. 6a, but now start-
ing from the values YHI on the Y lines obtained with
the first test pattern. In fig. 6b this procedure means
that the first pattern is looked for in copy i and the
second pattern in copy i + 1. In this copy as well k
may again appear at a Z or at a Youtput; ifit appears
at a Y output we repeat the procedure in the next suc-
ceeding copy. If different test patterns are found in a
copy with k appearing at a Y output, we must then
make a further examination of all these different Y pat-
terns inthe next copy. As soon as the fault appears at a
Z output in one of the copies, a critical path has been
found and the search is stopped. If we call this copy j,
then the critical path runs through copies i to j (the

initialization sequence Xo to Xt-I should be specified by
the network designer and must precede every test
sequence. The complete test for an s.a. fault thus
consists of the series of patterns Xo, ... Xt-I, Xt, ... Xj.
When calculating a critical path we must bear in

mind that the fault to be detected is of course present
in each copy, i.e. including the copies 0 to i-I that
are traversed during the initialization. Apart from the
result of the initialization for the fault-free circuit, we
must therefore also calculate the pattern Yt for every
possible s.a. fault. This means that in deriving a critical
path for a particular fault we mustalways proceed from
the initialization result Yt computed for this fault: .
During the calculation of the critical path the transi-

tion to a subsequent copy js always commanded by the
clock signal that generates the times to to tnoThe model

267

268 W. G: J. KREUWELS Philips tech. Rev. 35, NO.IO

in fig. 6b assigns this signal to the input pattern X; the
Xlines corresponding to it are called clock lines and the
others are called functional X lines. If we vary only the
values on the functionallines and keep the clock signal
constant, the response Z; changes but the subscript i
does not. This is the situation in which we look for a
critical path in copy i. Changing the clock signal causes
i to go to i + 1, so that the search can be continued in
the following copy.

The TESTSC program

The TESTSC program begins with a START proce-
dure for feeding the data to the computer (fig. 7).
Information on the structure of the network is read in
by the procedure READ and processed by the proce-
dure BOOK. The latter procedure derives from the
structure the list of candidates, i.e. the list of possible
'stuck at' faults for which test sequences have to be
sought. The initial information Xo to Xi-l is presented
by the INIT procedure. After this has been entered, a
MORE procedure calculates for each of the fault
candidates the initial Y values Yi from which a critical
path is to be sought. This also reveals the faults that
have already been detected by the initialization se-
quence, it is of course possible that certain faults will
appear at the Z output when this sequence is applied.
The results of MORE are similarly stored by BOOK.

A number of faults that the designer knows to be
undetectable are 'masked' in a sub-procedure of
START called MASK; no sequence will be sought for
these faults. These might typically be faults in parts of
the network that are technically necessary but logically
redundant.

The strategy STRAT

The principal fault-detection strategy STRAT (fig. 8)
generates the test sequences in the manner described
above. Since we always look for the critical path in a
combinational network, this strategy is virtually iden-
tical with that in fig. 5. The only difference is a proce-
dure CLOCK, interpolated between LOOK and
DIRECT. As long as this procedure is not active, a
search is made for a critical path in one particular copy
in the manner described in fig. 5. The CLOCK proce-
dure always ensures the transition to the next copy.
For each fault selected by the CAND procedure the
search is started in copy i, always proceeding from the
Yi values relating to the fault. Under the control of
CLOCK a series of copies i to j is then run through for
each fault arid a test pattern is calculated in each copy.
The sequences for the various faults will generally be
of different length. The MORE procedure investigates
to find the other faults detected byeach sequence.

START

Fig. 7. START procedure for entering the data into the computer.
The information sources are symbolically represented by
punched-card packages. The structural information of the net-
work is read in by the READ procedure and stored in BOOK.
The initialization sequence is read in by INIT; the procedure
MORE then calculates the starting pattern Yj (see fig. 6) for the
various possible faults and at the same time investigates to find out
which faults have already been detected during the initialization.
The MASK procedure receives data relating to faults which the
designer knows to be undetectable. All this information is col-
lected in BOOK.

BOOK keeps a continuous tally of particular faults
found by the different sequences.
The fact that STRAT fails to find a test sequence for

a particular fault does not permit the conclusion that
tests cannot be made for the fault. The strategy STRAT
does not investigate all detection possibilities but con-
fines itself to the most promising patterns - those that
contain the fault signal k, If there are too many of
these in a particular copy, even these may not all be
used. To restrict the computer time required a limit is

STRAT

Fig. 8. A fault-detection strategy STRAT for sequential networks.
For the various faults indicated by the procedure START test
sequences are derived by generating test patterns in a series of
copies i to j (see fig. 6b), for each fault starting from the input
pattern Yj for the given fault. The test pattern in a particular copy
is generated in the same way as illustrated in fig. 5; the CLOCK
procedure is responsible for the transition to the next copy. Here
again a MORE procedure investigates to find out the total fault-
detection capacity for the test sequence found.

Philips tech. Rev. 35, No. 10 TESTING DIGITAL JCs

also set to the length of a test sequence, so that the
search procedure is stopped after a certain number of
copies. In these latter points the program is very flex-
ible: the user may indicate how far he wishes the search
to be continued.

The strategies STRATZ and STRATYZ

In a well designed network the strategy STRAT will
generally be sufficient for computing the whole test
program. If faults remain for which STRAT finds no
sequence, it is very important for the designer to know
whether these faults are in fact non-testable, or whether
a test may yet be found for other Y values. To inves-
tigate this we added two additional strategies to the
program TESTSC. Our reasoning was as below.
If a fault is testable a 'last' copy j exists in which the

fault appears at a Z output. There is then also a pattern
Yj which, together with a pattern Xj, gives rise to a
critical path to a Z output. It must be possible to find
this path by means of the LOOK procedure provided
we allow all the possible values at the Y inputs. Having
found one or more Yj patterns in this way, we proceed
to derive the test sequence. We do this by working
through the model in fig. 6b from right to left until we
find a Y pattern that corresponds to the initialization
result Yt. Fig. 9 illustrates schematically the strategy
STRATZ that carries out this search; since all the Y
patterns now have to be investigated in each copy, this
strategy requires a great deal more computer time than
the STRAT strategy, in which only specific Y values
were involved.
If the STRATZ strategy also fails to find a test for

particular faults there still remains one possibility to be
investigated. Depending on the places where the loops
in the model shown in fig. 6a happen to have been
broken, faults will exist that cannot appear directly at
a Z output. These faults - if they are detectable -
first have to emerge via a Y output of the copy before
last. This means that such faults are only detectable if
the value k appears at one of the Y inputs in the last
copy. The FOR procedure only propagates k values to
the right, and BACK cannot introduce any new k
values at all. If we want to have k values at Y inputs in
the last copy, we must therefore obtain them with a
LOOK procedure in the penultimate copy. For each of
the faults remaining after STRATZ we must thus inves-
tigate whether a Y pattern exists that will cause the
fault to appear at a Y output and in the next succeeding
copy at a Z output. This is investigated by the strategy
STRATYZ (fig. la). Here again all the Yvalues in a
copy must be investigated, and therefore this strategy
also requires a great deal of computer time. STRATYZ
is consequently used only if faults without a test se-
quence remain after STRATZ. Only when neither

269

STRATZ

BOOK

Fig. 9. Strategy STRATZ for investigating the testability of faults
for which STRAT has not found any test sequence. For each of
these faults, indicated by CAND, the procedure LOOK(Z)
searches for patterns Yj with which the fault appears at a Z out-
put. The existence of one or more such patterns indicates that the
fault is testable. To investigate which of the patterns may emerge
from the initialization result Yj via a particular test sequence, the
CLOCK(R) procedure starts the BACK procedure in the preced-
ing copy and calculates in this the corresponding input patterns
Yj-l. In this way the model in fig. 6b is computed from right to
left (CLOCK(R) is a CLOCK procedure that works in reverse)
until a Y pattern is found that is identical with Yj, thus yielding
the X patterns that form the test sequence. Finally the CLOCK
and MORE procedures investigate whether this sequence is
capable of detecting other faults as well.

STRATYZ

BOOK

Fig. 10. The strategy STRATYZ used for investigating whether a
fault in the penultimate copy appears at a Y output and in the
last copy at a Z output. The procedure LOOK(Y) first calculates
all the Y patterns with which the fault appears at a Y output.
Then the CLOCK and LOOK(Z) procedures investigate to find
the cases for which the fault appears in the next copy at a Z
output. If such a pair of patterns Yj-l, :r1 is found, the fault is
testable. The test sequence is then determined in the same way as
in STRAT(Z) by calculating back to the initialization result.

270 TESTING DIGITAL ICs Philips tech. Rev. 35, No. 10

STRATZ nor STRATYZ can find a test may we con-
clude that a fault is fundamentally incapable of being
tested.
In addition to the strategies described above the

program TESTSC contains various other facilities, all
of which are designed to limit computer time. The
designer may for example supply a number of input
sequences that he thinks likely to be able to detect
faults. The ability of these sequences to detect faults
is then determined by means of the procedure which
does this in any case for the initialization sequence. It
is also possible to "generate sequences at random: in
this way a large number of test sequences may some-
times be made available with relatively little computer
time. These latter procedures are run through in the
program TESTSC before the strategy STRAT.

Applications

The TESTCC and TESTSC programs can be used
for a wide range of networks, including LSI circuits and
.networks formed on printed-wiring boards. More com-
plex systems, such as computer subsystems, can also be
handled as single entities. For practical reasons a limit
is set to the number of lines in a network on which
faults can be detected. Networks with a maximum of
about 1000 gate circuits can be handled.
It is not easy to give figures for the computer time

required, because it depends to a great extent on the
type of network to be tested. Shift registers and coun-
ters in particular tend to increase the time considerably.
However, if good use is made in such cases of the pos-
sibility of investigating in advance the usefulness of test
sequences supplied, this effect can be eliminated. Tak-
ing as an example a sequential network with 1000 gate
circuits, the TESTSC program on a computer such as
the IBM 370/165 will generally need a few hours of
computer time (and a storage capacity of 250 k bytes)
to generate the whole structural test program, provided
no untestable faults are found. The generation of one
test pattern takes about a few hundredths of a second
on the computer. If untestable faults are found, which
tends to happen in the design phase, it may cost a few
hours of computer time before they can be established
with certainty. If it is possible however, to divide up

the design of a sequential network in such a way that
the investigation can be performed on a few combina-
tional networks, a computer time of a few minutes to
about half an hour will be sufficient.
What takes most time and is therefore most expen-

sive is determining whether faults are fundamentally
incapable of being tested. Nevertheless this is in fact
one of the most important features of these programs,
since they enable design faults to be detected that would
otherwise not appear until a later stage, possibly not
until manufacture or later. This can lead to consider-
able savings, expecially in the development of LSI
circuits.

Summary. The functional test is made to determine whether the
design of a logic circuit properly reproduces the desired logic
function. In the complete test all possible combinations of input
signals are fed to the network and the responses to these test
patterns are compared with the responses of the fault-free circuit,
which is known from the truth table. For a large circuit, such as
a digital LSI network, this is not feasible; even ifthe test patterns
were generated by a computer the test would take far too long
(up to a few hundred years). It is possible, however, to make do
with far fewer test patterns. Starting from the structure of a net-
work a small group of test patterns can be derived that enable the
test to be carried out in a short time with 100% certainty. This
abbreviated test is referred to as 'structural'. This article de-
scribes two programs for deriving these patterns: the program
TESTCC is used for combinational networks, in which the
response depends only on the instantaneous input signal and in
which a fault is detected by one test pattern. The TESTSC pro-
gram is used for deriving test sequences for sequential networks,
in which the response is determined by series of input patterns.
The article begins with a brief review of the faults that can

occur during the various phases in the design of a digital network.
In the structural test it is only necessary to take account of
'stuck at' faults on the various connecting lines in the network;
the value on such a line remains fixed at '0' or 'I' and does not
respond to the other signals. A strategy is described that searches
for a critical path for each s.a. fault in a combinational network.
This is a path through the network that enables the fault to
become visible at an output; the input pattern that brings this
about is then the test pattern for this fault. To derive test se-
quences for a sequential network a model is used in which the
network is represented as a series of identical combinational net-
works. These are derived from the sequential network by taking
the internal feedback lines outside the circuit and breaking them.
In this model successive input patterns are fed to a series of
successive copies of the network. For each s.a. fault a search for
a critical path is then made for a number of these copies. If the
search is successful, the appropriate input patterns form the test
sequence. If no critical path is found for a particular fault, the
conclusion can be drawn that the fault is not capable of being
tested. This usually indicates a design fault; the discovery of such
faults, apart from finding the test patterns and sequences, is the
principal purpose of the programs. Networks with a maximum of
1000 gates can be processed. The computer time required depends
largelyon the type of network; with a conventionallarge com-
puter it may vary from a few minutes for a simple combinational
network to a few hours for a complicated sequential network.

