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Zelforganiserende systemen

T. J. B. Swanenburg

Inleiding

Moderne informatieverwerkende apparatuur is uiter-
mate succesvol in het vervullen van weliswaar uitge-
breide, maar in principe eenvoudige opdrachten, zoals
b.v. het sorteren volgens bepaalde kenmerken van de
gegevens in een databank. Voor zulke opdrachten is
de mens in staat een volledig en ondubbelzinnig voor-
schrift (algoritme) te geven dat een juiste uitvoering
van de opdracht garandeert. Bij beeldherkenning —
een boeiend onderdeel van het grote gebied van beeld-
verwerking — is de situatic geheel anders. Het her-
kennen van letters van een vast, zeer eenvoudig type is
nog wel te automatiseren. Gaat het echter om schrijf-
letters of andere wat minder scherp gedefinieerde beel-
den, dan is herkennen, hoe gemakkelijk dat ons als
mensen ook afgaat, in feite een z6 gecompliceerde taak
dat wij er meestal niet in slagen deze te ontleden in een
aantal algoritmen of logische operaties die we door
een elektronisch systeem kunnen laten uitvoeren [11,
Bovendien zijn beelden vaak z6 complex dat we ook
in die gevallen waarin het mogelijk lijkt die operaties
wel aan te geven, niet in staat zijn alle mogelijkheden
te overzien, waardoor fouten optreden.

Dezelfde problemen doen zich overal voor waar men
zeer gecompliceerde informatie machinaal zou willen
verwerken. In dit artikel trachten wij wegen aan te
geven die ons ontlasten van de plicht tot in detail iedere
stap in de informatieverwerking van tevoren vast te
leggen. Daarbij zoeken we naar een klein aantal een-
voudige algoritmen die ertoe leiden dat het systeem
zichzelf organiseert, dat wil zeggen: dat het zelf een
inwendige structuur ontwikkelt die zinvol is in de om-
geving waarin het moet opereren. Het is niet vanzelf-
sprekend dat dergelijke algoritmen bestaan. Inzichten
die verkregen zijn door de bestudering van biologische
systemen geven ons echter hoop. Een levend organisme
lijkt duidelijk ‘zelforganiserend’: het groeit tot een aan
de omgeving aangepast systeem dat veel complexer is
dan de ‘algoritmen’ die de groei beheersen — in dit
geval de erfelijke informatie die is opgeslagen in DNA-
moleculen [2.3],

In dit artikel bespreken we eerst de principes van
zelforganisatie, waarbij ook het essentiéle verschil ter
sprake komt tussen ‘zelforganiserende’ en ‘adaptieve’
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systemen. Vervolgens bespreken we een eenvoudig zelf-
organiserend systeem voor beeldherkenning en een
aantal computer-experimenten ter toetsing van de ge-
bruikte principes. Aan het slot stippen we enige moge-
lijkheden aan van zelforganisatie op andere gebieden
van informatieverwerking.

Zelforganisatie

Bij het ontwerpen van een systeem begint men er in
het algemeen mee de doelstelling scherp te formuleren.
Daarnaast moet men, met het oog op eventuele ver-
beteringen, de kwaliteit van het systeem kunnen vast-
stellen als het eenmaal gebouwd is, en daartoe heeft
men een of andere maat nodig voor de afwijking van het
gestelde doel. Bij de bouw van een systeem voor het
verwerken van zeer complexe informatie beginnen de
mogeilijkheden reeds bij deze twee punten. Blijkbaar zijn
wij nog niet in staat om op adequate wijze te beschrij-
ven aan welke voorwaarden een machine moet voldoen
om b.v. driedimensionale objecten te herkennen, of
kleine weefselafwijkingen in réntgenfoto’s van de
thorax. Zelfs als we zo’n machine gebouwd hebben,
blijkt het erg moeilijk om de kwaliteit ervan te bepalen,
We kunnen slechts trachten aan de hand van min of
meer toevallige voorbeelden de bereikte resultaten te
evalueren, en op grond van de daaruit getrokken con-
clusies het systeem te verbeteren. Maar doordat wij het
beoogde doel niet goed kunnen vertalen in algoritmen,
kunnen wij er nooit zeker van zijn dat deze veranderin-
gen bij volgende voorbeelden ook inderdaad verbe-
teringen zullen blijken te zijn.

Soms kan men de doelstelling wél scherp formuleren,
maar biedt het ontleden in algoritmen toch moeilijk-
heden. In zo’n geval kan een adaptief systeem wel eens
uitkomst bieden. Men geeft een aantal parameters die
van invloed zijn op het resultaat de gelegenheid zich te
adapteren aan het gestelde doel. In feite moet het sys-
teem dan één of meer maxima zoeken in een ruimte
waarvan de dimensionaliteit gegeven wordt door het
aantal parameters. Het volume van deze ruimte, en dus
in het algemeen ook de tijd, nodig voor het vinden van
deze maxima, neemt exponentieel toe met het aantal
parameters. Deze constatering leidt onmiddellijk tot de
conclusie dat deze benaderingswijze voor systemen van
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grote complexiteit onuitvoerbaar is: convergentie zou
een te lange tijd vergen [41. Bovendien kan het systeem
nooit de kwaliteit van zijn vroegere organisatievormen
tegen de huidige afwegen, doordat het geen geheugen
heeft: bij het zoeken van optimale parameterwaarden
worden vroegere waarden niet onthouden. Deze weg
is dus uitzichtloos.

Zelforganiserende systemen bieden ons inziens betere
vooruitzichten. In de inleiding merkten we reeds op dat
levende organismen duidelijk ‘zelforganiserend’ zijn.
Wijj zullen nu aan de hand van twee andere voorbeel-
den van zelforganisatie in de levende natuur dit begrip
nader onderzoeken.

Het eerste voorbeeld is dat van de evolutie van een
biologische soort. Volgens de tegenwoordige inzichten
in de eerste stadia van het evolutieproces komt een
bepaalde soort nooit slechts in één vorm voor; de in-
dividuen vertonen kleine verschillen die afbeeldingen
zijn van kleine verschillen in genetische informatie.
Deze genetische informatie is het geheugen van de soort;
men neemt aan dat het gemeenschappelijke stuk het
oudste is en in het verleden grote overlevingskansen
heeft geboden. De kleine verschillen ontstaan door
waarschijnlijk toevallige mutaties; deze geven de soort
de gelegenheid te evolueren naar een organisatievorm
die nog betere kansen biedt. De meeste mutaties bete-
kenen geen verbetering; het betreffende individu heeft
een lagere overlevingskans. Telt de soort echter genoeg
individuen, dan leidt dit mechanisme in het algemeen
toch tot een verdere evolutie van de soort, dank zij de
zeldzame mutaties die wél een verbetering betekenen (21,

Het tweede voorbeeld betreft de werking van de men-
selijke hersenen bij het opslaan en verwerken van de
informatie die via de zintuigen binnenkomt. Waar-
schijnlijk kan niet alle ontvangen informatie worden
opgeslagen; maar zelfs als dit wel zo zou zijn, zou de
aldus vergaarde kennis zinloos zijn; de kans dat een
eenmaal geregistreerde situatie zich nogmaals in exact
dezelfde vorm voordoet is nihil. Het kan niet anders of
de hersenen vormen uit de binnenkomende informatie-
stroom concepten (abstracties, generalisaties, ‘Gestal-
ten’), die ‘herkenning’ van latere soortgelijke, maar niet
exact gelijke, situaties mogelijk maken. De uitbreiding
van de opgeslagen informatie — de vorming van steeds
grotere concepten in een steeds complexer netwerk van
neuronen — lijkt sterk op het hiervoor geschetste evo-
lutieproces. Vooral voor dat gedeelte van de kennis
Wwaarvan wij ons bewust zijn en waarmee wij mani-
puleren, is het duidelijk dat wij voortdurend bezig zijn
cen zo eenvoudig mogelijk beeld te vormen van de ver-
schijnselen om ons heen. Wij proberen door het vor-
men van grote concepten zo shel mogelijk en zo goed
mogelijk een interpretatie te geven van wat wij zien of
horen. Deze grote concepten komen waarschijnlijk tot
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stand door min of meer willekeurige combinaties van
een aantal kleinere, en door al dan niet bewuste selectie
op grond van hun geschiktheid de ons omgevende we-
reld inderdaad eenvoudiger te beschrijven.

Beide voorbeelden zou men kunnen karakteriseren
door ‘algoritmen’ waarin behoud van informatie (vrijwel
exacte reproductie; geheugen) en toevallige mutaties
(in de hersenen: het vormen van nieuwe concepten) de
hoofdrol spelen. Als men al van een ‘doel’ zou willen
spreken, b.v. het maximaliseren van de overlevings-
kans, of het vinden van een adequate beschrijving van
de omringende wereld — een dergelijk doel is niet
expliciet aanwezig in de algoritmen van het systeem.
Wat er uiteindelijk ontstaat of gebeurt, komt tot stand
door de wisselwerking van het systeem met zijn omge-
ving. In een poolzee overleven andere soorten — soor-
ten met andere specifieke algoritmen — dan in een
tropisch oerwoud; door de omgang met paarden ont-
staat een ander ‘adequaat’ kennispakket dan door de
omgang met motoren.

Op grond van deze voorbeelden zouden we een zelf-
organiserend systeem als volgt willen karakteriseren.
Om te beginnen moet de ‘speelruimte’ voldoende zijn
om complexe structuren te kunnen vormen. Voor de
evolutie wordt deze speelruimte gevonden in de orga-
nisch chemische wereld met zijn onbegrensde mogelijk-
heden, voor de hersenen in de neuronen, die in prin-
cipe netwerken van vrijwel onbegrensde complexiteit
kunnen vormen. Enerzijds moet een geheugen waar-
borgen dat eenmaal gevormde structuren enige tijd
behouden blijven; anderzijds moeten nieuwe structuren
kunnen ontstaan uit oude door mutaties. Deze kunnen
niet anders dan toevallig zijn, omdat een expliciet om-
schreven doelstelling ontbreekt. De structuren die ten
slotte ontstaan, worden bepaald door de algoritmen
van het systeem en de wisselwerking met de omgeving.
Enigszins antropomorf uitgedrukt: het systeem pro-
beert het in zijn omgeving met steeds nieuwe struc-
turen. Het geheugen brengt met zich mee dat het sys-
teem een aantal mogelijkheden naast elkaar kan pro-
beren: het heeft de beschikking over structuren die tot
nu toe de beste waren, plus een aantal variaties daarop
waarvan sommige misschien beter zijn.

Wanneer de speelruimte — b.v. het totaal aantal
bouwstenen of de geheugenruimte — beperkt is, moe-
ten de minder succesvolle varianten worden afgebroken
om de mogelijkheid te behouden steeds nieuwe varian-
ten te vormen (selectie). Daarbij zij opgemerkt dat dit

(11 R. O. Duda en P. E. Hart, Pattern classification and scene
analysis, Wiley, New York 1973.

(2] M. Eigen, Self-organization of matter and the evolution of
biological macromolecules, Naturwiss. 58, 465-523, 1971.

B1 G. J. Chaitin, Information-theoretic computational com-
plexity, IEEE Trans. IT-20, 10-15, 1974,

T4 M. Minsky en S. Papert, Perceptrons, M.LT. Press, Cam-
bridge (Mass.) 1969.
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tot een snellere evolutie leidt, doordat niet langer alle
oude informatie beschikbaar is voor het proberen van
nieuwe vormen. Anderzijds betekent het ook dat niet
altijd de beste organisatievorm wordt gevonden: het
uitsterven van informatie sluit een aantal vormen
uit [2,5],

De belangrijkste punten van verschil met een adap-
tief systeem worden gevormd door het geheugen en het
ontbreken van een doel dat in de algoritmen van het
systeem expliciet is omschreven.

Een zelforganiserend systeem voor beeldherkenning

Wij bespreken nu een eenvoudig beeldherkennings-
systeem dat volgens de hierboven uiteengezette prin-
cipes is ontworpen. Het gaat daarbij om het herkennen
van binaire beelden op een raster van 8 x 8 beeldpunten.
Op het eerste gezicht lijkt dat misschien wel een erg
eenvoudig soort beelden. Het aantal ervan bedraagt
echter 264 (ongeveer 1019). De kans op exacte overeen-
stemming tussen twee ‘toevallige’ patronen is dus ook
hier nihil.

Wij staan hier eerst nog even stil bij het begrip ‘her-
kenning’. Meestal denkt men daarbij aan het identi-
ficeren van objecten die van te voren zijn genoemd; het
hier door ons gehanteerde begrip heeft echter een
enigszins andere betekenis. De meeste lezers zullen in
de patronen van fig. Ia wel iets ‘herkennen’, te weten
een verticale zwarte lijn op een witte achtergrond. Dit
komt doordat ‘verticale rechte lijn’ een voor de hand
liggend concept in ons geheugen is. De punten die niet
met de beschrijving overeenstemmen, worden afgedaan
als irrelevant, als ruis. Herkennen in deze zin is het
kunnen interpreteren van een nooit eerder waarge-
nomen ingangssignaal met behulp van concepten in ons
geheugen.

Dit is het soort herkennen waartoe ook het bedoelde
systeem in staat is. We lichten dit toe aan de hand van
de klasse van patronen waartoe de beelden van fig. 1a
behoren, te weten de patronen die ontstaan als men
een wit veld genereert met een verticale zwarte balk
op een willekeurige positie, en vervolgens de beeld-
puntwaarde op vier willekeurige plaatsen ombkeert
(ruis). Het aantal patronen in deze klasse bedraagt on-
geveer 5 x 108, Aan het systeem worden nu willekeurige
beelden uit deze klasse getoond. Nadat het een klein
gedeelte van het totaal aantal mogelijke patronen heeft
gezien, heeft het de structuur ‘ontdekt’: het heeft in
zijn geheugen het concept ‘wit veld’ en acht concepten
‘verticale zwarte balk’ gevormd, ondanks het feit dat
die structuur zelden of nooit in zuivere vorm is voor-
gekomen. (De acht verticale balken zijn voor het sys-
teem acht verschillende concepten.) De herkenning of
interpretatie van een nieuw patroon uit deze klasse ge-
schiedt nu zoals geschetst in fig. 2: het wordt gerecon-
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Fig. 1. Binaire beelden van 8x8 beeldpunten met een zekere
structuur en met een bepaalde hoeveelheid ruis. De structuur in
het drietal beelden (a) — verticale zwarte balk op witte achter-
grond — raadt men gemakkelijk. Dit komt doordat het concept
‘verticale zwarte balk’ vooraan in ons geheugen ligt. Van het
drietal (b)) wordt de structuur (c) pas duidelijk als men de ruis
verwijdert. De ‘signaal/ruisverhouding’ is in (a) en (b) even
groot; in beide gevallen liggen er acht grondpatronen aan ten
grondslag waarin vier willekeurige beeldpunten van waarde zijn
omgekeerd.

strueerd met behulp van het concept ‘wit veld’, één van
de acht concepten ‘verticale balk’ en viermaal een ruis-
punt. Dit is wat wij verder in dit artikel onder ‘herken-
nen’ zullen verstaan: het reconstrueren van een patroon
met behulp van bestaande geheugenpatronen.

De drie beelden van fig. 15 behoren tot een serie die
evenveel informatie (structuur) bevat als die van fig. 1a.
De meeste lezers zullen de structuur echter niet herken-
nen zonder dat deze eerst in zuivere vorm is getoond
(zie fig. 1¢): zij ligt niet zo ‘voor de hand’ als die van
fig. 1a. Het systeem heeft met deze serie echter niet méér
moeite dan met de eerste, aangezien het in beide geval-
len met een blanco geheugen begint en, zoals gezegd,
de informatie-inhoud van beide gelijk is. Dit is een van
de belangrijke aspecten van het systeem: gegeven een
voldoend aantal ingangssignalen, ontdekt het structuur
of informatie die allerminst evident is.

Wij komen nog even terug op de reconstructie van
een ingangssignaal (fig. 2). De concepten en ruispunten
staan geschreven op een reeks geheugenmatrices. Voor
de beeldpunten daarvan zijn er drie mogelijke toestan-
den: wit, zwart en ‘onbezet’. Bij de reconstructie over-
schrijft elk volgend geheugenpatroon de voorgaande
patronen, waarbij echter de onbezette punten geen
effect hebben; daardoor blijven de voorgaande pa-

51 M. Eigen en P. Schuster, The hypercycle, a principle of nat-
ural self-organization, Naturwiss. 64, 541-565, 1977, en 65,
7-41 en 341-369, 1978.

M. Eigen en R. Winkler-Oswatitsch, Das Spiel, Piper-Ver-
lag, Miinchen 1975.




Philips techn. T. 38, no. 11/12

tronen gedeeltelijk behouden in het gereconstrueerde
beeld. Zo ontstaan in fig. 2 de zwarte balk 2 en de
zwarte punten 3, 4 en 6 in het witte veld /, en het witte
punt 5 in de zwarte balk 2.

In grote lijnen werkt het systeem als volgt. De ge-
heugenstructuur is geschetst in fig. 3: 128 elementaire
geheugenbeelden met één wit of één zwart beeldpunt
en een aantal geheugenmatrices die in het begin on-
bezet zijn. Bij presentatie van het eerste ingangssignaal
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treedt reeds ‘herkenning’ in de bovengenoemde zin op:
het signaal wordt gereconstrueerd met behulp van 64
van de 128 elementaire geheugenbeelden. Bovendien
worden er, door willekeurige samenvoegingen van twee
elementaire beelden, enige nieuwe (tweepunts)patro-
nen gemaakt en op onbezette matrices opgeslagen.
Latere ingangssignalen worden herkend met de op dat
ogenblik aanwezige geheugenpatronen, en wel met een
zo Kklein mogelijk aantal daarvan. Een geheugen-

L s

Fig. 2. Herkenning. Nadat het systeem de structuur ‘wit veld-zwarte balk’ heeft leren kennen
doordat het een aantal beelden van deze structuur heeft gezien, reconstrueert het het ingangs-
signaal s met behulp van de ‘concepten’ / en 2 en de elementaire beelden (ruispunten) 3, 4, 5
en 6 in zijn geheugen. Dit is wat in dit artikel onder ‘herkennen’ wordt verstaan. In de ge-
heugenmatrices hebben de beeldpunten drie mogelijke toestanden: zwart, wit of ‘onbezet’
(grijs). Elk volgend geheugenbeeld vult met zijn ‘informatie’ (de zwarte of witte punten)
lege plaatsen in de uitgangsmatrix en overschrijft de reeds aanwezige informatie.

T
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Fig. 3. Inrichting van het systeem voor beeldherkenning. Het systeem bevat 128 elementaire
geheugenplaatsen die elk één zwart of één wit beeldpunt bevatten, en een groot aantal andere
plaatsen die in het begin leeg zijn en tijdens het leren beschreven worden met concepten.

patroon krijgt een waardering die evenredig is met de
frequentie waarmee het in de ingangssignalen voor-
komt. Nieuwe geheugenpatronen ontstaan door de
combinatie van twee geheugenpatronen die bij de
laatste herkenning zijn gebruikt (mutatie, fig. 4); dit
gebeurt op statistische basis, met een grote kans op
samenvoeging van patronen met een hoge waardering.
De gebruikte patronen blijven in het algemeen bestaan,
de nieuwe combinatie komt op de geheugenplaats met
de laagste waardering; de daar eventueel aanwezige in-
formatie gaat verloren. De succesvolle patronen groeien
aldus in waardering ten koste van de minder succes-
volle; deze sterven na verloop van tijd uit. In het geval
van de bovengenoemde klasse van patronen ontstaan
ten slotte in het geheugen een wit veld en acht verticale

Fig, 4. Twee voorbeelden van een mutatie. Op min of meer wille-
€urige ogenblikken worden nieuwe geheugenconcepten gevormd
0or de combinatie van twee reeds bestaande concepten. De

twee daarbij gebruikte concepten blijven in het geheugen.
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zwarte balken. De optimale representatie is dan bereikt:
het systeem heeft de structuur in de beelden ontdekt.
Er is dus geen onderscheid tussen een leer- en een
herkenningsfase; het systeem ‘herkent’ vanaf het begin,
zij het op weinig efficiénte wijze. De prestatie van het
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Fig. 5. Ter illustratie van de herkenningsalgoritme. Het ingangs-
signaal s wordt met de geheugenbeelden m, ms, . . . in stappen
gereconstrueerd op de uitgangsmatrix (r1, re, . . ). Het geheugen-
beeld dat de beste overeenstemming geeft, blijkt m te zijn; dit
wordt als eerste stap in de reconstructie op de uitgangsmatrix
geschreven (r1). In k1 ziet men voor welk stuk van s na deze stap
reeds overeenstemming is gevonden (dubbele arcering) en voor
welk stuk nog niet (enkele arcering). Het geheugenbeeld dat het
nog ongedekte stuk het best dekt, blijkt me te zijn. Dit beeld
wordt over r1 op de uitgangsmatrix geschreven (rz); nu is alleen
de balk nog ongedekt (kz). De volgende beste geheugenbeelden
zijn ms en ms. Het ingangssignaal is na deze vier stappen geheel
gereconstrueerd.

systeem is dus niet gelegen in het herkennen zonder
meer, maar in het steeds efficiénter leren herkennen.
In het bovengenoemde geval heeft het in het begin
64 beelden nodig voor de reconstructie, in de eindfase
slechts zes: twee van de negen gevormde concepten en
vier elementaire beelden. ‘Eindfase’ is overigens een
onbekend begrip voor het systeem: het blijft proberen
of er nog een betere organisatie is.

Ten einde de werking nader te preciseren, bespreken
we de algoritmen waarop het systeem is gebaseerd.

T. J. B. SWANENBURG

Philips techn. T. 38, no. 11/12

Algoritmen

De algoritme voor herkenning luidt als volgt (zie
fig. 5). Zoek in het geheugen het patroon op dat de
grootste overeenkomst heeft met het ingangssignaal.
Zijn er patronen met een gelijke mate van overeen-
komst, kies dan die met het kleinste aantal beeldpunten.
Is er dan nog meer dan één patroon over, doe daar dan
een willekeurige keuze uit. Lees het aldus gevonden
patroon uit in de uitgangsmatrix en vergelijk het met
het ingangssignaal. Herhaal de operatie voor de punten
waarvoor nog geen overeenkomst bestaat. Ieder vol-
gend geheugenpatroon overschrijft de informatie die
op dat ogenblik in de uitgangsmatrix staat.

Hierbij zij opgemerkt dat deze algoritme niet altijd
tot de reconstructie met het kleinste aantal geheugen-
patronen leidt. Zouden we dit als voorwaarde stellen,
dan zou het systeem alle mogelijke combinaties van
geheugenbeelden moeten proberen. Voor grote geheu-
gens is dit prohibitief: de vereiste tijd neemt exponen-
tieel toe met het aantal geheugenbeelden. De bespro-
ken algoritme werkt snel — de vereiste tijd is slechts
evenredig met het aantal geheugenbeelden —, en meest-
al bevredigend. Wij hebben snelheid dus laten pre-
valeren boven de zekerheid dat de meest efficiénte
reconstructie altijd wordt gevonden.

Bij het creéren van nieuwe geheugenpatronen (mu-
taties) speelt de frequentie waarmee dit geschiedt een
belangrijke rol: gebeurt het niet vaak genoeg, dan ver-
loopt de evolutie te traag, gebeurt het te vaak, dan kan
waardevolle informatie verloren gaan. Er moet dus een
optimale mutatiekans zijn. Zonder precies te definiéren
wat wij hier onder ‘optimaal’ verstaan, vermelden we

64
50

wo |\

120

o

T

10t
5_
(¢}
2t .
ES N
0 10 200

— N

Fig. 6. Experimenteel leergedrag van het systeem bij het leren
van één beeld zonder ruis. M is het aantal geheugenbeelden dat
bij de reconstructie wordt gebruikt nadat het ingangssignaal, dat
steeds exact gelijk blijft, N maal is aangeboden. De punten wer-
den gevonden bij een simulatie van het systeem op een mini-
computer.
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Fig. 7. Leergedrag bij de aanbieding van een wit veld met ruis-
punten. M is het aantal geheugenbeelden dat gebruikt wordt bij
de herkenning van het beeld zonder ruis, nadat het beeld met
ruis N maal is aangeboden.
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Fig. 8. Leergedrag bij de aanbieding van een wit veld met een

verticale zwarte balk op een willekeurige plaats en ruispunten (zie
fig. 1a). M en N als in fig. 7.

O ruisniveau 0 (0 ruispunten),
A o 132 (2 » )
v 5 1/8 (8 Sl [

het resultaat van ons onderzoek hierover, te weten de
algoritme voor waardering en mutatie die dit optimum
vertegenwoordigt: noteer na elke herkenning de waar-
dering wy van elk patroon, d.i. het totaal aantal malen
dat het bij herkenning is gebruikt. Verdeel de patronen
in ‘plus-> en ‘minpatronen’, dat zijn de patronen waar-
voor wy resp. groter of kleiner is dan de gemiddelde
waardering w. Beslis na elke herkenning door het lot
of het eerste pluspatroon zal worden gebruikt voor een
mutatie, en geef het daarvoor een kans (w; — w)/w;. Is
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de uitslag positief, combineer het dan met het eerst-
volgende pluspatroon tot een nieuw patroon. De ge-
bruikte patronen blijven behouden, het nieuwe komt
op de laagst gewaardeerde plaats. Herhaal zowel bij
positieve als bij negatieve uitslag de procedure met de
volgende pluspatronen.

Deze algoritme belichaamt het statistische, niet-
deterministische karakter van het systeem; in het bij-
zonder kan het aantal mutaties na elke herkenning
variéren van nul tot de helft van het aantal dan aan-
wezige pluspatronen. Hij impliceert ook het uitsterven
van weinig succesvolle patronen.

Experimenten

Ten einde de principes van het besproken systeem te
toetsen, hebben wij het gesimuleerd op een Philips
minicomputer (P855M) en daarmee een groot aantal
experimenten vitgevoerd. We bespreken hier enige van
deze experimenten; de resultaten ervan ziet men in
fig. 6, 7 en 8. In deze figuren is M het aantal geheugen-
beelden dat nodig is voor de reconstructie van een aan-
geboden beeld zonder ruis, nadat het systeem N beelden
heeft gezien, eventueel met ruis. (Voor het reconstrue-
ren van een beeld met ruis is het aantal vereiste geheu-
genbeelden dus M plus het aantal ruispunten.) De fi-
guren geven dus het leergedrag van het systeem; een
steile curve betekent ‘snel leren’. De figuren verschillen
in de aard van de ingangssignalen.

Fig. 6 betreft het leren kennen van één beeld. Het-
zelfde beeld wordt dus, zonder ruis, keer op keer aan-
geboden aan het systeem. Zoals men ziet, wordt het
beeld met één concept herkend nadat het systeem het
beeld ongeveer 120 maal heeft gezien.

Het exponenti€le verband tussen M en N dat in fig. 6
tot uiting komt, kan worden verklaard op grond van
een zeer vereenvoudigd model van het systeem. Daarin
wordt, na elke herkenning, de kans per geheugenbeeld
op een mutatie gesteld op een vast getal o. Stel het sys-
teem heeft Mo beeldpunten (64 in ons geval); dit is dan
ook het aantal beelden dat vereist is voor de eerste
herkenning. Het aantal mutaties na deze herkenning is,
in dit model, gemiddeld aMp. Nu is in het onderhavige
geval (steeds hetzelfde beeld, geen ruis) ieder geheugen-
patroon dat ontstaat door combinatie van twee ge-
bruikte, weer bruikbaar; iedere mutatie reduceert het
aantal vereiste geheugenbeelden dus met één. Het aan-
tal vereiste geheugenbeelden is na de eerste herkenning
dus Mo—aM,, ofwel My(l-a). Na de tweede herken-
ning is het Mo(l-a)2, na de derde: Mo(1-a)3, enzo-
voort; algemeen:

M = Mo(1-0)". 0y

Op het belang van dit exponenti€le verband komen we
zo dadelijk nog terug.
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Fig. 7 toont het leergedrag voor ingangssignalen die
bestaan uit een wit veld met een zekere hoeveelheid
ruis. Er zijn twee oorzaken aan te wijzen waardoor het

leerproces trager wordt als de ruis toeneemt. In de

eerste plaats is nu niet langer iedere combinatie succes-
vol, en de kans op succes neemt af met toenemende
ruis. Ten tweede neemt de waardering van goede com-
binaties langzamer toe; het duurt langer voordat het
systeem ‘weet’ wat goede en slechte combinaties zijn.

Ten slotte ziet men in fig. 8 hoe snel het systeem de
eerder besproken beelden ‘wit veld met een verticale
balk’ (fig. 1a) leert, bij verschillende ruisniveaus. De
‘leertijd’ is hier langer doordat het systeem niet één maar
negen concepten (een wit veld en acht verticale balken)
moet leren. Voorts zijn de leercurven niet meer expo-
nentieel. Dit komt doordat elke curve in feite de som is
van twee exponentiéle curven met verschillende ‘tijd-
constanten’: het witte veld is een ‘belangrijker’ concept
en wordt daarom sneller geleerd dan de zwarte balken.
In alle gevallen slaagt het systeem er ten slotte in elk
beeld te reconstrueren met twee concepten en ruis.

T. J. B. SWANENBURG
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voor de mutatiekans (blz. 384-385). Bij gebruikmaking
van deze kans evolueert het systeem ‘zo snel mogelijk’
naar een geheugeninhoud die het aangeboden materiaal
‘zo goed mogelijk’ interpreteert.

In de tweede plaats kunnen we uit verg. (1) nog een
zeer belangrijke gevolgtrekking maken. Duidelijk-
heidshalve schrijven we B voor het positieve getal
—In(1-a); dan volgt uit verg. (1):

N = (InMe-InM)/B.

Uit deze relatie volgt dat de vooruitzichten om de be-
schreven principes ook in meer gecompliceerde sys-
temen toe te passen tamelijk gunstig zijn: het aantal
malen (N) dat een beeld moet worden getoond voordat
het systeem het beeld ‘kent’ (M = 1), neemt slechts
logaritmisch toe met de complexheid (het aantal
beeldpunten Mo) van het systeem. Dit in scherpe tegen-
stelling met adaptieve systemen, waarvoor men, zoals
we zagen, moet verwachten dat de voor adaptie be-
nodigde tijd exponentieel toeneemt met de complex-
heid (het aantal parameters).

a b c

d e

Fig. 9. ‘Associatie’. Als het systeem de patronen (@), (b), (¢) en (d) heeft geleerd, heeft het
aan de ‘hint’ (¢) genoeg om daarin (a) te herkennen: het reconstrueert (¢) met het concept (a)

en 8 ruispunten.

Conclusies; verdere mogelijkheden voor zelforganisatie

Uit de besproken en nog vele andere experimenten
blijkt dat ‘zelforganisatie’ voor systemen een werkzaam
principe is: nadat het systeem slechts een betrekkelijk
klein aantal beelden van een bepaalde structuur heeft
gezien, heeft het bijna steeds de beste geheugen-
concepten gevonden voor de herkenning van de struc-
tuur. Opmerkelijk is dat het daarbij ‘ideale’ concepten
vormt, terwijl het de structuur wellicht nooit in ideale
vorm heeft gezien, maar steeds behept met fouten. In
dit opzicht zou het misschien als een — weliswaar
uitermate simpel — model kunnen dienen voor de
vorming van concepten in het menselijk brein. Mis-
schien geldt dit ook nog in andere opzichten. Als het
systeem bijvoorbeeld de patronen van fig.9a,b,cend
heeft geleerd, en het krijgt het patroon van fig. 9¢ aan-
geboden, dan heeft het aan deze ‘hint’ genoeg: het
interpreteert fig. 9¢ als fig. 9a en een aantal fouten
(‘associatie’).

Het onderzoek heeft geleid tot twee belangrijke
kwantitatieve resultaten. Het eerste is een optimum

Overigens kan de leertijd vanzelfsprekend sterk
worden bekort door eventuele kennis die men van de
structuur en de ingangssignalen heeft, aan het systeem
mee te delen, b.v. het concept ‘wit veld’ in de situatie
van de experimenten van fig. 8. Het systeem behoeft
dan alleen nog de acht balken te vinden; de zelf-
organisatie begint op een hoger niveau en neemt daar-
door minder tijd.

a b c

Fig. 10. Hiérarchie in dé herkenning. Als het systeem het concept
<wit veld’ en 8 concepten ‘verticale zwarte balk” heeft geleerd, zijn
de drie patronen (a), (b) en (c) in eerste instantie ‘gelijk’: het eerste
geheugenbeeld is: ‘wit veld’. In tweede instantie zijn (@) en (b) nog
gelijk (balk no. 3) maar verschillend van (¢) (balk no. 5). Pas bij
verdere analyse komt het verschil tussen (a) en (b) 1ot uiting. Deze
hiérarchie in de herkenning kan worden gebruikt om de herken-
ningstijd te bekorten als men slechts in globale informatie is ge-

interesseerd.
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.Omgekeerd kan de tijd die nodig is voor de herken-
ning van een patroon sterk worden bekort als men ge-
noegen neemt met minder informatie. Wanneer het
systeem de patronen van fig. 10 en soortgelijke pa-
tronen geleerd heeft, is de eerste stap in de herkenning
voor alle drie dezelfde: het geheugenbeeld dat het best
past is een wit veld. Het kan zijn dat deze informatie al
voldoende is, b.v. wanneer wij alleen de vraag stellen
of het ingangssignaal in hoofdzaak wit of zwart is. Bij
de volgende stap zijn de eerste twee beelden nog gelijk
aan elkaar, maar is de derde verschillend, en in de
laatste stap blijkt dat ook de eerste twee niet gelijk zijn.
Deze hiérarchie in het herkenningsproces lijkt buiten-
gewoon aantrekkelijk; het systeem hoeft, wanneer dat
niet nodig is, niet alle aangeboden informatie met die
in zijn geheugen te vergelijken.

Het systeem is op allerlei manieren voor uitbreiding
vatbaar. Daarbij kan men in de eerste plaats denken aan
transformaties van geheugenbeelden. In het geval ‘wit
veld met verticale balk’ zou men in plaats van met negen
slechts met twee concepten uitkomen als, bij de poging
tot reconstructie, de verticale balk in het geheugen
horizontaal verplaatst mag worden. Het systeem heeft
dan meer mogelijkheden om te generaliseren. Dit leidt
tot een efficiénter gebruik van het geheugen, en daarmee
weer tot de mogelijkheid complexere structuren op te
slaan. In een verder stadium zouden dan ook trans-
laties in willekeurige richting en rotaties in aanmerking
moeten komen.

In de tweede plaats kan men ook denken aan geheel
andere vormen van informatieverwerking. Om een be-
trekkelijk willekeurig voorbeeld aan te stippen: men
zou in principe een systeem kunnen maken dat, voor-
zien van geschikte randapparatuur, kan leren ‘lezen’.
Het besproken systeem associeert bepaalde zwarte of
witte beeldpunten die vaak samen voorkomen, met

6] T. S. Kuhn, The structure of scientific revolutions, 2e druk,
Univ. of Chicago Press, Chicago 1970.
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elkaar tot één geheugenconcept. Lezen is ‘in principe’
hetzelfde: het is het associéren van bij elkaar behorende
tekens en klanken.

Ten slotte komen we nogmaals terug op het onzekere
element in de herkenningsprocedure. Om er zeker van
te zijn dat het systeem altijd de beste (de meest effi-
ciénte) beschrijving van de aangeboden ingangssignalen
vindt, zouden we in de eerste plaats de ‘beste’ beschrij-
ving moeten kunnen definiéren, en daartoe zouden we
alle ingangssignalen moeten kennen; maar we ver-
wachten juist dat het systeem uit een betrekkelijk klein
aantal voorbeelden nuttige concepten leert. Ten tweede
probeert het systeem ook bij de aangeboden voorbeel-
den niet alle mogelijkheden — wat veel te lang zou
duren —, maar beperkt het zich tot een verdere evolutie
van de succesvolle combinaties. Deze onzekerheid is
de prijs die we moeten betalen voor het realiseren van
de mogelijkheid in een betrekkelijk korte tijd een rede-
lijke mate van organisatie te bereiken. Dit verschijnsel
is echter niets nieuws. Als mens worden we voort-
durend geconfronteerd met deze onzekerheid, wanneer
we ons afvragen of onze interpretatie van de wereld om
ons heen wel de juiste is [6],

Samenvatting. Beeldherkenning is een voorbeeld van informatie-
verwerking die zo gecompliceerd is dat zij moeilijk kan worden
geautomatiseerd. Dit komt voornamelijk doordat het herken-
ningsproces en het beoogde doel moeilijk ontleed kunnen worden
in scherp geformuleerde, eenvoudige algoritmen. De oplossing die
in dit artikel gezocht wordt, is die van zelforganisatie. In analogie
met de evolutie van een biologische soort en met de vorming van
concepten in de hersenen, wordt hier een zelforganiserend sys-
teem voornamelijk gekarakteriseerd door een geheugen en door
toevallige mutaties. De mutaties maken het mogelijk de geheugen-
inhoud op den duur aan te passen aan de omgeving. In het geval
van beeldherkenning is ‘de omgeving’ het aangeboden beeld-
materiaal. Computer-simulatie-experimenten van een systeem dat
is ontworpen voor het herkennen van zwart-witbeelden van 8 < 8
beeldpunten, demonstreren de werkzaamheid van ‘zelforgani-
satie’. Het systeem heeft zelf de structuur in bepaald beeld-
materiaal ontdekt, nadat het slechts een klein gedeelte daarvan
heeft gezien: in het geheugen zijn geheugenbeelden ontstaan
waarmee elk nieuw beeld van dat materiaal het meest efficiént
kan worden gereconstrueerd.




